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 Cyclic structures are often used to model and simulate long chain molecules due to the 

simplification of no chain end effects. Further, many technically important and biologically 

relevant molecules are cyclics. In this letter, a dimensional analysis of cyclic polymers and its 

use to describe scattering data from cyclic macromolecules is presented. The validity of the new 

approach to describe cyclic structures is demonstrated and the Casassa form factor previously 

used for cyclic polymers is critically revisited.  

 

 

Introduction.- Cyclic structures are prevalent in many biological and synthetic molecules; e.g. 

cyclic molecules play an important role in the DNA transcription process [1] as well as complex 

biochemical processes like insulin secretion [2].  Synthetic systems like macrocyclic-ethers 

(crown-ethers) have been synthesized for specific applications like cationic and anionic 

complexation agents [3]. The absence of chain ends has led to speculation that the dynamic 

properties of polymeric rings differ from their linear analogues [4]. Detailed experimental studies 

have been conducted on cyclic poly(dimethyl siloxane) (PDMS) [5-7] due to its natural tendency 

to form rings. Small angle neutron scattering (SANS) has been a primary tool to quantify these 

structures, and has made it possible to corroborate theoretical/computational predictions 

regarding the structure/conformation of ring polymers under different thermodynamic 
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conditions. These studies along with the recent development of Ru-based catalyst system by 

Bielawski et al. [8] for industrial scale production of cyclic polymers has invigorated interest in 

obtaining effective descriptions of cyclic structures.  

 SANS is an effective analytic technique to characterize local features of the structure like 

the mean square radius of gyration of the cyclic polymer molecule, Rg, as well as the mass/size 

scaling of such a structure. The Casassa form factor [9] has been used for cyclic 

macromolecules. It has been reported in literature that the Casassa equation [9] results in less 

than satisfactory fits to describe the observed small angle scattering (SAS) patterns [5], 

especially for larger rings of higher molar mass. 

 This letter describes a pathway to model cyclics using a new approach developed by 

Beaucage [10, 11] for analyzing hierarchical structures. We shall also look at existing SANS data 

of cyclic polymers from the literature as a check for this approach [10, 11]. It will be evident that 

this model yields an effective description for cyclic polymers. Additional information regarding 

the conformational state of the cyclic structures as well as their thermodynamic state can be 

understood using this approach. The final section will critically assess the Casassa equation [9, 

12] using the new structural model. 

     

Scaling and model for cyclic structures.- Any hierarchical molecular structure can be assumed to 

be composed of z primary units, of which p units describe the minimum or short circuit path 

through the structure (broken line and lighter circles in FIG. 1); (z - p) units are present in 

structural branches, so the branch fraction φbr is then given as [10], 
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Quantitative φbr estimates can be obtained for a variety of different architectures [10, 11]. 

Detailed information regarding the structure of hierarchical/branched materials can be obtained 

from SAS data φbr analysis [10, 11]. Additional information regarding structure can be obtained 

from dimensional parameters obtained from such an analysis. The mass fractal dimension, df, 

often describes the average structure of such hierarchical materials. The SAS analysis given by 

Beaucage [10] results in additional parameters, viz. the minimum path dimension, dmin, and the 

connectivity dimension, c. These dimensions reflect different attributes of a hierarchical 

structure. The connectivity dimension reflects topology [10, 11] since, 

c
pz =                    (2) 

 dmin reflects the tortuosity of the minimum path often dictated by the thermodynamics of 

macromolecular systems [10, 11], 

min
d
Rp =                   (3) 

where R could be some average measure of size for the overall structure like the polymer coil 

radius of gyration, Rg. This approach decomposes the overall structure as reflected by df, into 

contributions from topological and tortuosity effects as [10, 11], 

! 

df = cd
min

                  (4) 

 We can adopt this model to describe a cyclic structure. The minimum path for any 

structure is the path of conductance (the path traversed to get across the structure in space). This 

feature of the minimum path for a cyclic structure is shown schematically in FIG. 1. As can be 

seen in FIG. 1, the minimum path for a cyclic structure would be composed of half its length (p = 

z/2); so from equation 2, 
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c is a function of z and approaches 1 (the definition of a linear chain) for high z.  The primary 

particles which do not compose the minimum path contribute toward φbr. Hence in theory, for 

cyclic structures φbr should display a constant value of 0.5 (FIG. 1), regardless of molar mass, z.   

 

 

FIG. 1. Schematic representation of the minimum path, p, through a cyclic structure (1c) as 

discussed in text. The minimum path for a cyclic would constitute half the chain (indicated by 

the broken line and lighter circles); a) linear chain, b) 4-arm star, c) cyclic, d) disc.   

 

Small angle neutron scattering.- The scattering curve from a mass-fractal object like a cyclic 

displays two regimes, at low-q (Guinier’s law) [10, 11], 
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and at high-q (power law) [10, 11], 
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where I is the scattered intensity, q is the scattering vector given as q = 4π sin(θ/2)/λ ( θ: 

scattering angle, λ:wavelength of the radiation), G and Bf are the Guinier and power law 

prefactors respectively. FIG. 2a shows the four parameters that can be obtained from SANS data, 
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the Guinier prefactor G, the radius of gyration of the polymer coil Rg, the power law prefactor Bf, 

and the mass-fractal dimension df. G and Rg are derived from Guinier’s law (equation 6), which 

predicts an exponential decay in scattered intensity at the Rg of the structure, and Bf and df reflect 

the power law which gives the mass/size scaling of the structure in terms of the mass-fractal 

dimension df (equation 7). Beaucage [10] has shown that topology of the structure can be 

quantitatively estimated from such SANS data; dmin for example can be calculated as [10], 
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where Γ is the gamma function. Also shown in FIG. 2a is the signature effect of the topological 

structure on SANS data. The black curve represents SANS from a linear structure for which z = 

p, dmin ~ df and c = 1. The grey curve represents scattering from a more compact structure for 

which z >> p, dmin ~ 1, and c ~ df. Topology is thus reflected by the shift of power law relative to 

the Guinier’s law in SANS data, and is quantifiable (equation 8).  

 SANS data from blends of hydrogenous and deuterated cyclic PDMS, digitized from the 

literature works is shown in FIG. 2b [5-7]. The details of the PDMS samples are given in Table I. 

The SANS data are fit to the unified function [13] and the dimensions associated with φbr from 

these fits are tabulated in Table I. According to the random phase approximation the structure 

factor for a binary blend of hydrogenous (H) and deuterated (D) components would be a function 

of the individual structure factors, SH(q) and SD(q) the structure factors for the hydrogenous and 

deuterated components respectively and χF, the Flory-Huggins interaction parameter [14]. There 

are two assumptions involved in the unified fits [13] performed on the SANS data. Firstly we 

assume that the blends of hydrogenous and deuterated PDMS constitutes an athermal mixture 

where χF = 0 and the individual structure factors have the same functional form (Rg,H ≈ Rg,D) and 
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hence that the data can be fit using a single structure factor S(q,Rg). Calculation of φbr requires 

structural information from two levels; the overall chain size and the persistence length. Since 

these SANS data sets do not cover the necessary q-range, the size of the primary building blocks 

is used from literature value of persistence length for PDMS of 5.61 Å [15]. The φbr values for all 

the cyclic samples calculated in this way from unified fits [13] are close to 0.5 (Table I). It is also 

of interest to note the values of the minimum path dimension, dmin. For a conventional branched 

polymer, like long chain branched polyethylene, dmin should reflect the scaling of a linear chain 

in similar thermodynamic conditions [11]. For example, in dilute good-solvent conditions, the 

value of dmin should approach good-solvent scaling of a linear chain of 5/3, and in the melt, it 

should approach Gaussian linear chain scaling of 2.  
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 FIG. 2. a) Representation of small angle neutron scattering data from hierarchical linear (black 

curve) and branched (grey curve) structures, b) Digitized small angle neutron scattering data 

from blends of hydrogenous and deuterated cyclic PDMS samples from literature [5-7]. The 

details of the samples are given in Table I. The data is fit to the unified function [13]. 

 

 In the context of this scaling model it is interesting to compare a 4-arm star 

(monodisperse arm lengths) and a cyclic polymer, since both these structures display φbr = 0.5. 

This is indicated schematically in FIG. 1b and 1c. For a melt of a 4-arm star polymer, dmin = 2 

(the scaling of a linear chain in the melt state). In the case of a cyclic polymer melt, due to the 

constraints of the chain ends being confined, we expect dmin to approach 2 for large cyclics in the 

melt as the conformational constraint is reduced.  
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Table I. Details of polydimethylsiloxane (PDMS) samples from literature [5-7]. Mw: weight 

average molar mass of H/D components. The unified function [13] fits to small angle neutron 

scattering data in FIG. 2b results in the following parameters: Guinier prefactor G, Rg, power law 

prefactor Bf, df, dmin, c, z and φbr.   

Sample Mw (g/mol)[5-7] G Rg (Å) Bf df dmin c z φbr 

PDMS 5[5] 5,000/5,000 3.9 13.6 0.0214 2.11 1.37 1.54 6.5 0.48 

PDMS 4[7] 4,780/4,760 3.9 13.6 0.0210 2.12 1.39 1.52 6.5 0.48 

PDMS 3[5] 4,780/11,140 5.6 16.8 0.0185 2.16 1.51 1.43 10.6 0.50 

PDMS 2[6] 8,900/11,110 6.2 20.3 0.0183 2.07 1.54 1.35 14.3 0.49 

PDMS 1[6] 19,800/16,300 12.6 30.6 0.0155 2.11 1.72 1.23 35.9 0.48 

 

 As can be seen from the values listed in Table I, dmin increases with increasing molecular 

weight of the cyclic PDMS blends from 1.37 to 1.72, asymptotically approaching the mass/size 

scaling of a linear chain in the melt (Gaussian, df = 2) [14]. The observed values of dmin (Table I) 

are much lower than 2, due to constraining the ends of the chain. dmin values for the cyclic PDMS 

blends are plotted against the degree of polymerization, z (Table I), in FIG. 3. The filled circles 

are the actual dmin values from fits shown in FIG. 2b. The broken line in FIG. 3 represents the 

calculated curve for projected values of dmin for higher z, under the constraint of φbr = 0.5. The 

exact relationship used to calculate the forecasted dmin curve can be obtained from the definition 

of φbr (equation 1) and p = z/2 [10], and is given as,  

( )
( ) !

!
"

#
$$
%

&
+=

z
dd br
f

ln

ln
1

min

'
               (9) 



 9 

As can be seen from FIG. 3, for φbr = 0.5 for cyclics, and df = 2, at very large size and molecular 

weight, the projected dmin value asymptotically approaches 2, indicating the approach to a linear 

chain in the Gaussian state for infinite molecular weight cyclics [14]. The scaling model is thus 

capable of accounting for the expected behavior of a cyclic chain. As was discussed in the 

previous paragraph, dmin for a cyclic polymer melt would always be lower than 2, and the actual 

values from the SANS fits, and the projected behavior (equation 9) corroborate this. 

 The minimum path dimension, dmin, mimicking the dimension of the linear path through 

the structure has also been reported for long chain branched macromolecules [10] and 

hyperbranched polymers [11] under different thermodynamic conditions. For cyclic polymers, 

dmin could be used as a parameter to probe the conformation attained under different conditions, 

like in melts and solutions. For example, a dilute solution of cyclic polymers in a solvent would 

be characterized by dmin values asymptotically approaching good solvent scaling for linear chains 

of 5/3 at high molar mass [14]. 
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FIG. 3. Minimum path dimension, dmin, plotted as a function of the polymerization index, z. The 

filled circles are the actual dmin values from Table I. The broken line represents calculated dmin at 

higher z values from equation 9 assuming df = 2 and φbr = 0.5. 

 

Casassa equation.- The Casassa equation [9] gives the scattering form factor for a cyclic/ring 

polymer, and has been widely used in literature reports concerning small angle scattering from 

cyclic structures [5, 6]; though it has been found to be of limited use as a fitting function to 

actual SANS data. The Casassa form factor [9] is given by, 
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where t = q2Rg
2. The product of the exponential and the integral in equation 10 is also known as 

the Dawson integral [9]. As reported in literature [5, 6], the Casassa equation does not accurately 

predict actual scattering data from cyclics, especially for higher molecular weight cyclics [5, 6]. 

Some authors have used the Debye function [16] for linear polymer chains to attempt to fit cyclic 

scattering data with equally poor results. The failure of the Debye equation [5, 6] as a fit to SAS 

data from cyclics is not surprising, since the Debye equation describes linear Gaussian polymer 
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chains [16]. The unsatisfactory fits obtained using the Casassa equation, according to the authors 

of these reports [5, 6] is possibly related to contamination of these samples with linear chains. 

We believe that a more fundamental problem exists with the Casassa equation as outlined below. 

 

Unified function and φbr analysis.- A calculation based on the Casassa function is shown in FIG. 

4a for a cyclic with Rg = 141 Å and the calculated Casassa form factor is fit to the unified 

function [13]. The distinct knee feature in this curve is a clear indication of a high value of φbr 

and a dense structure (see FIG. 2a).  The unified function [13] results in the fit parameters: the 

mass fractal dimension df; the power law prefactor, Bf; the Guinier prefactor, G; and the radius of 

gyration, Rg, which can be used to calculate φbr, dmin, and c [10, 11].  
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 FIG. 4 a) Unified function [13] fit to the calculated Casassa form factor. The distinct knee 

feature is a clear indication of a dense structure with a high value of φbr as predicted by the model 

and, b) Mass fractal dimension, connectivity dimension, and minimum path dimension, plotted 

as a function of the radius of gyration of calculated Casassa form factors. These dimensions were 

obtained by unified function [13] fits similar to that shown in FIG. 4a. Open symbols represent 

dimensions for a linear Gaussian chain, crossed open symbols represent a 2-d disc. 

  

 An analysis of the dimensions obtained from the unified fits [13] from multiple 

calculated Casassa form factors indicates the probable reason for problems encountered in using 

the Casassa equation as a fitting function for higher molecular weight cyclics. In FIG. 4b, the 

different dimensions are plotted as a function of the cyclic Rg. With increasing size of the cyclic 

molecule, the connectivity dimension, c, tends to df and to 2, and the minimum path dimension, 

dmin, tends to 1 (FIG. 4b). The Casassa equation reduces to a 2-d disc scattering function at high 

molecular weight rather than an asymptotic approach to a linear chain: this could be an 

explanation of the problems encountered in the literature of using the Casassa equation as a 
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fitting function to SANS data from cyclic macromolecules [5, 6]. The Casassa approach 

considers a Gaussian distribution of the segments which make up the structure between any two 

points, for the conditions that the start and end units of the chain are the same unit and that the 

overall structure is two dimensional. At high molar mass these conditions can only be met by a 

disk. 

 In context of the scaling model the validity of the Casassa approach is doubtful, since it is 

based on the constrained cyclic structure (dmin < 2) being described in the framework of Gaussian 

distribution of individual segments (dmin = 2). On the other hand, the model for cyclic structures 

presented here (FIG. 1c), makes no assumption concerning the dimensionality of the structure. 

The only assumption in the scaling model is that the minimum path, p = z/2. This constraint is 

equally valid for a symmetric 4 arm star polymer, however, the 4 arm star requires a further 

constraint that dmin is fixed by the thermodynamic conditions to either 2 for a melt or 5/3 for 

good solvent conditions. So in the scaling model, the conformational constraint of FIG. 3 defines 

a cyclic macromolecule. 

 

Conclusions.- A new scaling model for cyclic polymers was presented and applied to literature 

SANS data. The new analysis procedure can characterize fundamental structural and 

thermodynamic features associated with cyclic macromolecules. It was demonstrated that cyclic 

structures, regardless of their size and molar mass, can be characterized by φbr = 0.5 as predicted 

by the model. This approach results not only in an effective description of the cyclic structures in 

general, but also pin-points problems with traditional approaches in the literature, viz. the 

Casassa form factor [9]. With the advent of new catalyst systems for the synthesis of cyclic 

polymers on an industrial scale [8], this scaling approach could result in a new and effective 
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route to obtain routine characterization of these structures. It is also hoped that this approach 

could be used to further our understanding of a variety of cyclic structures encountered in 

biomolecules as well as synthetic cyclic molecules. 

 The authors would like to acknowledge the support for this work through NSF Grant 

CTS-0626063, and a grant from Equistar Corporation; the application of scaling models to 

cyclics was suggested to the authors in discussions with S. J. Clarson and he is acknowledged 

and thanked for raising our interest in this area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 15 

*gbeaucag@uc.edu 

[1] J. P. Hoeffler et al., Science 242, 1430 (1988). 

[2] S. Takasawa et al., Science 259, 370 (1993). 

[3] J. L. Atwood, K. T. Holman, and J. W. Steed, Chem. Commun. 12, 1401 (1996); M. L. 

Dietz, and J. A. Dzielawa, ibid. 20, 2124 (2001). 

[4] M. E. Cates, and J. M. Deutsch, J. Phys. (Paris) 47, 2121 (1986); S. P. Obhukov, M. 

Rubinstein, and T. Duke, Phys. Rev. Lett. 73, 1263 (1994); T. McLeish, Science 297, 

2005 (2002). 

[5] V. Arrighi et al., Macromolecules 37, 8057 (2004). 

[6] S. Gagliardi et al., J. Chem. Phys. 122, 064904 (2005). 

[7] S. Gagliardi et al., Appl. Phys. A S469, (2002).   

[8] C. W. Bielawski, D. Benitez, and R. H. Grubbs, Science 297, 2041 (2002). 

[9] E. Casassa, J. Polym. Sci. Part A 3, 605 (1965). 

[10] G. Beaucage, Phys. Rev. E 70, 031401 (2004). 

[11] A. S. Kulkarni, and G. Beaucage, Macromol. Rapid. Commun. 28, 1312 (2007); J. 

Polym. Sci. Part B Polym. Phys. 44, 1395 (2006). 

[12] C. J. C. Edwards et al., Polymer 25, 365 (1984). 

[13] G. Beaucage et al., Nature Mater. 3, 370 (2004); J. Appl. Crystallogr. 28, 717 (1995). 

[14] P. G. deGennes, “Scaling concepts in polymer physics”, Cornell Univ. Press, New York 

(1979). 

[15] G. Beaucage et al., Macromolecules 29, 8349 (1996). 

[16] A. Guinier and G. Fournet, “Small Angle Scattering of X-rays”, Wiley, New York, 

(1955). 


